Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Clin Invest ; 134(8)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38421730

RESUMO

Staphylococcus aureus is a leading cause of biofilm-associated prosthetic joint infection (PJI). A primary contributor to infection chronicity is an expansion of granulocytic myeloid-derived suppressor cells (G-MDSCs), which are critical for orchestrating the antiinflammatory biofilm milieu. Single-cell sequencing and bioinformatic metabolic algorithms were used to explore the link between G-MDSC metabolism and S. aureus PJI outcome. Glycolysis and the hypoxia response through HIF1a were significantly enriched in G-MDSCs. Interfering with both pathways in vivo, using a 2-deoxyglucose nanopreparation and granulocyte-targeted Hif1a conditional KO mice, respectively, attenuated G-MDSC-mediated immunosuppression and reduced bacterial burden in a mouse model of S. aureus PJI. In addition, single-cell RNA-Seq (scRNA-Seq) analysis of granulocytes from PJI patients also showed an enrichment in glycolysis and hypoxia-response genes. These findings support the importance of a glycolysis/HIF1a axis in promoting G-MDSC antiinflammatory activity and biofilm persistence during PJI.


Assuntos
Células Supressoras Mieloides , Humanos , Camundongos , Animais , Células Supressoras Mieloides/fisiologia , Staphylococcus aureus , Biofilmes , Granulócitos , Hipóxia
2.
Cancer Lett ; 579: 216468, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37940068

RESUMO

Bone metastatic disease of prostate cancer (PCa) is incurable and progression in bone is largely dictated by tumor-stromal interactions in the bone microenvironment. We showed previously that bone neutrophils initially inhibit bone metastatic PCa growth yet metastatic PCa becomes resistant to neutrophil response. Further, neutrophils isolated from tumor-bone lost their ability to suppress tumor growth through unknown mechanisms. With this study, our goal was to define the impact of metastatic PCa on neutrophil function throughout tumor progression and to determine the potential of neutrophils as predictive biomarkers of metastatic disease. Using patient peripheral blood polymorphonuclear neutrophils (PMNs), we identified that PCa progression dictates PMN cell surface markers and gene expression, but not cytotoxicity against PCa. Importantly, we also identified a novel phenomenon in which second generation androgen deprivation therapy (ADT) suppresses PMN cytotoxicity via increased transforming growth factor beta receptor I (TßRI). High dose testosterone and genetic or pharmacologic TßRI inhibition rescued androgen receptor-mediated neutrophil suppression and restored neutrophil anti-tumor immune response. These studies highlight the ability to leverage standard-care ADT to generate neutrophil anti-tumor responses against bone metastatic PCa.


Assuntos
Neoplasias Ósseas , Neoplasias da Próstata , Masculino , Humanos , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Receptores Androgênicos/metabolismo , Androgênios , Neutrófilos/metabolismo , Antagonistas de Androgênios/farmacologia , Antagonistas de Androgênios/uso terapêutico , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/secundário , Linhagem Celular Tumoral , Microambiente Tumoral
3.
J Neuroinflammation ; 20(1): 114, 2023 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-37179295

RESUMO

BACKGROUND: Treatment of brain tumors, epilepsy, or hemodynamic abnormalities requires a craniotomy to access the brain. Nearly 1 million craniotomies are performed in the US annually, which increase to ~ 14 million worldwide and despite prophylaxis, infectious complications after craniotomy range from 1 to 3%. Approximately half are caused by Staphylococcus aureus (S. aureus), which forms a biofilm on the bone flap that is recalcitrant to antibiotics and immune-mediated clearance. However, the mechanisms responsible for the persistence of craniotomy infection remain largely unknown. The current study examined the role of IL-10 in promoting bacterial survival. METHODS: A mouse model of S. aureus craniotomy infection was used with wild type (WT), IL-10 knockout (KO), and IL-10 conditional KO mice where IL-10 was absent in microglia and monocytes/macrophages (CX3CR1CreIL-10 fl/fl) or neutrophils and granulocytic myeloid-derived suppressor cells (G-MDSCs; Mrp8CreIL-10 fl/fl), the major immune cell populations in the infected brain vs. subcutaneous galea, respectively. Mice were examined at various intervals post-infection to quantify bacterial burden, leukocyte recruitment, and inflammatory mediator production in the brain and galea to assess the role of IL-10 in craniotomy persistence. In addition, the role of G-MDSC-derived IL-10 on neutrophil activity was examined. RESULTS: Granulocytes (neutrophils and G-MDSCs) were the major producers of IL-10 during craniotomy infection. Bacterial burden was significantly reduced in IL-10 KO mice in the brain and galea at day 14 post-infection compared to WT animals, concomitant with increased CD4+ and γδ T cell recruitment and cytokine/chemokine production, indicative of a heightened proinflammatory response. S. aureus burden was reduced in Mrp8CreIL-10 fl/fl but not CX3CR1CreIL-10 fl/fl mice that was reversed following treatment with exogenous IL-10, suggesting that granulocyte-derived IL-10 was important for promoting S. aureus craniotomy infection. This was likely due, in part, to IL-10 production by G-MDSCs that inhibited neutrophil bactericidal activity and TNF production. CONCLUSION: Collectively, these findings reveal a novel role for granulocyte-derived IL-10 in suppressing S. aureus clearance during craniotomy infection, which is one mechanism to account for biofilm persistence.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Animais , Camundongos , Interleucina-10 , Neutrófilos/patologia , Craniotomia/efeitos adversos , Camundongos Knockout , Camundongos Endogâmicos C57BL
4.
J Clin Med ; 9(7)2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32640676

RESUMO

Little information is available on the functional activity of leukocytes after arthroplasty or the expansion of populations with immune suppressive properties during the acute post-operative period. Synovial fluid and matched pre- and post-surgical blood samples were collected from total hip and knee arthroplasty patients (THA and TKA, respectively) to examine the impact of surgery on peripheral blood leukocyte frequency, bactericidal activity, and inflammatory mediator expression. For spinal surgeries, inflammatory mediator production by peripheral blood mononuclear cells (PBMCs) pre- and post-surgery was examined. An expansion of immune suppressive granulocytic myeloid-derived suppressor cells (G-MDSCs) was observed following arthroplasty, which correlated with significantly increased serum interleukin-10 (IL-10) levels. Analysis of synovial fluid from THA and TKAs revealed reduced granulocyte colony-stimulating factor (G-CSF) and soluble CD40 ligand (sCD40L) and increased interleukin-6 (IL-6), monocyte chemoattractant protein 2 (CCL2) and Fms-like tyrosine kinase 3 ligand (Flt-3L) compared to pre- and post-surgical serum. For the spinal surgery cohort, stimulation of PBMCs isolated post-surgery with bacterial antigens produced significantly less pro-inflammatory (IL-1α, IL-1ß, interleukin-1 receptor antagonist (IL-1RA), IL-12p40, growth-related oncogene-α/GRO-α (CXCL1) and 6Ckine (CCL21)) and more anti-inflammatory/tissue repair mediators (IL-10, G-CSF and granulocyte-macrophage colony-stimulating factor (GM-CSF)) compared to PBMCs recovered before surgery. The observed bias towards systemic anti-inflammatory changes without concomitant increases in pro-inflammatory responses may influence susceptibility to infection following orthopaedic surgery in the context of underlying co-morbidities or risk factors.

5.
J Neuroinflammation ; 17(1): 114, 2020 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-32290861

RESUMO

BACKGROUND: A craniotomy is required to access the brain for tumor resection or epilepsy treatment, and despite precautionary measures, infectious complications occur at a frequency of 1-3%. Approximately half of craniotomy infections are caused by Staphylococcus aureus (S. aureus) that forms a biofilm on the bone flap, which is recalcitrant to antibiotics. Our prior work in a mouse model of S. aureus craniotomy infection revealed a critical role for myeloid differentiation factor 88 (MyD88) in bacterial containment and pro-inflammatory mediator production. Since numerous receptors utilize MyD88 as a signaling adaptor, the current study examined the importance of Toll-like receptor 2 (TLR2) and TLR9 based on their ability sense S. aureus ligands, namely lipoproteins and CpG DNA motifs, respectively. We also examined the role of caspase-1 based on its known association with TLR signaling to promote IL-1ß release. METHODS: A mouse model of craniotomy-associated biofilm infection was used to investigate the role of TLR2, TLR9, and caspase-1 in disease progression. Wild type (WT), TLR2 knockout (KO), TLR9 KO, and caspase-1 KO mice were examined at various intervals post-infection to quantify bacterial burden, leukocyte recruitment, and inflammatory mediator production in the galea, brain, and bone flap. In addition, the role of TLR2-dependent signaling during microglial/macrophage crosstalk with myeloid-derived suppressor cells (MDSCs) was examined. RESULTS: TLR2, but not TLR9, was important for preventing S. aureus outgrowth during craniotomy infection, as revealed by the elevated bacterial burden in the brain, galea, and bone flap of TLR2 KO mice concomitant with global reductions in pro-inflammatory mediator production compared to WT animals. Co-culture of MDSCs with microglia or macrophages, to model interactions in the brain vs. galea, respectively, also revealed a critical role for TLR2 in triggering pro-inflammatory mediator production. Similar to TLR2, caspase-1 KO animals also displayed increased S. aureus titers coincident with reduced pro-inflammatory mediator release, suggestive of pathway cooperativity. Treatment of caspase-1 KO mice with IL-1ß microparticles significantly reduced S. aureus burden in the brain and galea compared to empty microparticles, confirming the critical role of IL-1ß in limiting S. aureus outgrowth during craniotomy infection. CONCLUSIONS: These results demonstrate the existence of an initial anti-bacterial response that depends on both TLR2 and caspase-1 in controlling S. aureus growth; however, neither pathway is effective at clearing infection in the WT setting, since craniotomy infection persists when both molecules are present.


Assuntos
Biofilmes/crescimento & desenvolvimento , Caspase 1/deficiência , Contenção de Riscos Biológicos/métodos , Craniotomia/efeitos adversos , Infecção da Ferida Cirúrgica/metabolismo , Receptor 2 Toll-Like/deficiência , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais/fisiologia , Infecções Estafilocócicas/etiologia , Infecções Estafilocócicas/metabolismo , Staphylococcus aureus/crescimento & desenvolvimento , Infecção da Ferida Cirúrgica/etiologia
6.
J Neurochem ; 148(5): 652-668, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-29873075

RESUMO

Juvenile Neuronal Ceroid Lipofuscinosis (JNCL) is an autosomal recessive lysosomal storage disease caused by loss-of-function mutations in CLN3. Symptoms appear between 5 and 10 years of age, beginning with blindness and seizures, followed by progressive cognitive and motor decline, and premature death. Glial activation and impaired neuronal activity are early signs of pathology in the Cln3Δex7/8 mouse model of JNCL, whereas neuron death occurs much later in the disease process. We previously reported that Cln3Δex7/8 microglia are primed toward a pro-inflammatory phenotype typified by exaggerated caspase 1 inflammasome activation and here we extend those findings to demonstrate heightened caspase activity in the Cln3Δex7/8 mouse brain. Based on the ability of caspase 1 to cleave a large number of substrates that have been implicated in JNCL pathology, we examined the functional implications of caspase 1 inflammasome activity by crossing Cln3Δex7/8 and caspase 1-deficient mice to create Cln3Δex7/8 /Casp-1-/- animals. Caspase 1 deletion influenced motor behavior deficits and astrocyte activation in the context of CLN3 mutation, since both were significantly reversed in Cln3Δex7/8 /Casp-1-/- mice, with phenotypes approaching that of wild-type animals. We also report a progressive age-dependent reduction in whisker length in Cln3Δex7/8 mice that was partially caspase 1-dependent. However, not all CLN3 phenotypes were reversed following caspase 1 deletion, since no significant differences in lysosomal accumulation or microglial activation were observed between Cln3Δex7/8 and Cln3Δex7/8 /Casp-1-/- mice. Although the molecular targets of aberrant caspase 1 activity in the context of CLN3 mutation remain to be identified, our studies suggest that caspase 1 may represent a potential therapeutic target to mitigate some attributes of CLN3 disease. This article is part of the Special Issue "Lysosomal Storage Disorders".


Assuntos
Encéfalo/enzimologia , Encéfalo/patologia , Caspase 1/metabolismo , Lipofuscinoses Ceroides Neuronais/enzimologia , Lipofuscinoses Ceroides Neuronais/patologia , Animais , Masculino , Camundongos , Camundongos Knockout , Camundongos Mutantes
7.
Am J Physiol Renal Physiol ; 315(3): F512-F520, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29667912

RESUMO

Estrogen has been implicated in the regulation of growth and immune function in the kidney, which expresses the full-length estrogen receptor-α (ERα66), its ERα splice variants, and estrogen receptor-ß (ERß). Thus, we hypothesized that these splice variants may inhibit the glomerular enlargement that occurs early in type 1 diabetes (T1D). T1D was induced by streptozotocin (STZ) injection in 8- to 12-wk-old female mice lacking ERα66 (ERα66KO) or all ERα variants (αERKO), and their wild-type (WT) littermates. Basal renal ERα36 protein expression was reduced in the ERα66KO model and was downregulated by T1D in WT mice. T1D did not alter ERα46 or ERß in WT-STZ; however, ERα46 was decreased modestly in ERα66KO mice. Renal hypertrophy was evident in all diabetic mice. F4/80-positive immunostaining was reduced in ERα66KO compared with WT and αERKO mice but was higher in STZ than in Control mice across all genotypes. Glomerular area was greater in WT and αERKO than in ERα66KO mice, with T1D-induced glomerular enlargement apparent in WT-STZ and αERKO-STZ, but not in ERα66KO-STZ mice. Proteinuria and hyperfiltration were evident in ERα66KO-STZ and αERKO-STZ, but not in WT-STZ mice. These data indicate that ERα splice variants may exert an inhibitory influence on glomerular enlargement and macrophage infiltration during T1D; however, effects of splice variants are masked in the presence of the full-length ERα66, suggesting that ERα66 acts in opposition to its splice variants to influence these parameters. In contrast, hyperfiltration and proteinuria in T1D are attenuated via an ERα66-dependent mechanism that is unaffected by splice variant status.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Nefropatias Diabéticas/prevenção & controle , Receptor alfa de Estrogênio/metabolismo , Glomérulos Renais/metabolismo , Animais , Glicemia/metabolismo , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Tipo 1/induzido quimicamente , Diabetes Mellitus Tipo 1/genética , Nefropatias Diabéticas/induzido quimicamente , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/metabolismo , Receptor alfa de Estrogênio/deficiência , Receptor alfa de Estrogênio/genética , Feminino , Taxa de Filtração Glomerular , Glomérulos Renais/patologia , Glomérulos Renais/fisiopatologia , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Isoformas de Proteínas , Proteinúria/genética , Proteinúria/metabolismo , Proteinúria/prevenção & controle , Estreptozocina , Aumento de Peso
8.
Ann Neurol ; 80(6): 909-923, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27804148

RESUMO

OBJECTIVE: Juvenile neuronal ceroid lipofuscinosis (JNCL), or juvenile Batten disease, is a pediatric lysosomal storage disease caused by autosomal recessive mutations in CLN3, typified by blindness, seizures, progressive cognitive and motor decline, and premature death. Currently, there is no treatment for JNCL that slows disease progression, which highlights the need to explore novel strategies to extend the survival and quality of life of afflicted children. Cyclic adenosine monophosphate (cAMP) is a second messenger with pleiotropic effects, including regulating neuroinflammation and neuronal survival. Here we investigated whether 3 phosphodiesterase-4 (PDE4) inhibitors (rolipram, roflumilast, and PF-06266047) could mitigate behavioral deficits and cell-specific pathology in the Cln3Δex7/8 mouse model of JNCL. METHODS: In a randomized, blinded study, wild-type (WT) and Cln3Δex7/8 mice received PDE4 inhibitors daily beginning at 1 or 3 months of age and continuing for 6 to 9 months, with motor deficits assessed by accelerating rotarod testing. The effect of PDE4 inhibitors on cAMP levels, astrocyte and microglial activation (glial fibrillary acidic protein and CD68, respectively), lysosomal pathology (lysosomal-associated membrane protein 1), and astrocyte glutamate transporter expression (glutamate/aspartate transporter) were also examined in WT and Cln3Δex7/8 animals. RESULTS: cAMP levels were significantly reduced in the Cln3Δex7/8 brain, and were restored by PF-06266047. PDE4 inhibitors significantly improved motor function in Cln3Δex7/8 mice, attenuated glial activation and lysosomal pathology, and restored glutamate transporter expression to levels observed in WT animals, with no evidence of toxicity as revealed by blood chemistry analysis. INTERPRETATION: These studies reveal neuroprotective effects for PDE4 inhibitors in Cln3Δex7/8 mice and support their therapeutic potential in JNCL patients. Ann Neurol 2016;80:909-923.


Assuntos
Lipofuscinoses Ceroides Neuronais/tratamento farmacológico , Inibidores da Fosfodiesterase 4/farmacologia , Inibidores da Fosfodiesterase 4/uso terapêutico , Sistema X-AG de Transporte de Aminoácidos/biossíntese , Aminopiridinas/uso terapêutico , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Benzamidas/uso terapêutico , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , AMP Cíclico/metabolismo , Ciclopropanos/uso terapêutico , Modelos Animais de Doenças , Técnicas de Introdução de Genes , Proteína Glial Fibrilar Ácida/metabolismo , Proteína 1 de Membrana Associada ao Lisossomo/metabolismo , Masculino , Glicoproteínas de Membrana/genética , Camundongos , Chaperonas Moleculares/genética , Destreza Motora/efeitos dos fármacos , Lipofuscinoses Ceroides Neuronais/genética , Fármacos Neuroprotetores/farmacologia , Rolipram/uso terapêutico , Teste de Desempenho do Rota-Rod
9.
J Neurosci ; 36(37): 9669-82, 2016 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-27629717

RESUMO

UNLABELLED: Juvenile neuronal ceroid lipofuscinosis (JNCL) is a fatal lysosomal storage disease caused by autosomal-recessive mutations in CLN3 for which no treatment exists. Symptoms appear between 5 and 10 years of age, beginning with blindness and seizures, followed by progressive cognitive and motor decline and premature death (late teens to 20s). We explored a gene delivery approach for JNCL by generating two self-complementary adeno-associated virus 9 (scAAV9) constructs to address CLN3 dosage effects using the methyl-CpG-binding protein 2 (MeCP2) and ß-actin promoters to drive low versus high transgene expression, respectively. This approach was based on the expectation that low CLN3 levels are required for cellular homeostasis due to minimal CLN3 expression postnatally, although this had not yet been demonstrated in vivo One-month-old Cln3(Δex7/8) mice received one systemic (intravenous) injection of scAAV9/MeCP2-hCLN3 or scAAV9/ß-actin-hCLN3, with green fluorescent protein (GFP)-expressing viruses as controls. A promoter-dosage effect was observed in all brain regions examined, in which hCLN3 levels were elevated 3- to 8-fold in Cln3(Δex7/8) mice receiving scAAV9/ß-actin-hCLN3 versus scAAV9/MeCP2-hCLN3. However, a disconnect occurred between CLN3 levels and disease improvement, because only the scAAV9 construct driving low CLN3 expression (scAAV9/MeCP2-hCLN3) corrected motor deficits and attenuated microglial and astrocyte activation and lysosomal pathology. This may have resulted from preferential promoter usage because transgene expression after intravenous scAAV9/MeCP2-GFP injection was primarily detected in NeuN(+) neurons, whereas scAAV9/ß-actin-GFP drove transgene expression in GFAP(+) astrocytes. This is the first demonstration of a systemic delivery route to restore CLN3 in vivo using scAAV9 and highlights the importance of promoter selection for disease modification in juvenile animals. SIGNIFICANCE STATEMENT: Juvenile neuronal ceroid lipofuscinosis (JNCL) is a fatal lysosomal storage disease caused by CLN3 mutations. We explored a gene delivery approach using two self-complementary adeno-associated virus 9 (scAAV9) constructs to address CLN3 dosage effects using the methyl-CpG-binding protein 2 (MeCP2) and ß-actin promoters. hCLN3 levels were elevated 3- to 8-fold in Cln3(Δex7/8) mice receiving scAAV9/ß-actin-hCLN3 versus scAAV9/MeCP2-hCLN3 after a single systemic injection. However, only scAAV9/MeCP2-hCLN3 corrected motor deficits and attenuated glial activation and lysosomal pathology. This may reflect preferential promoter usage because transgene expression with scAAV9/MeCP2-green fluorescent protein (GFP) was primarily in neurons, whereas scAAV9/ß-actin-GFP drove transgene expression in astrocytes. This is the first demonstration of systemic delivery for CLN3 using scAAV9 and highlights the importance of promoter selection for disease modification in juvenile animals.


Assuntos
Dependovirus/genética , Terapia Genética , Glicoproteínas de Membrana/uso terapêutico , Chaperonas Moleculares/uso terapêutico , Lipofuscinoses Ceroides Neuronais/genética , Lipofuscinoses Ceroides Neuronais/terapia , Actinas/genética , Actinas/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Técnicas de Transferência de Genes , Humanos , Masculino , Glicoproteínas de Membrana/genética , Proteína 2 de Ligação a Metil-CpG/genética , Proteína 2 de Ligação a Metil-CpG/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Chaperonas Moleculares/genética , Transtornos dos Movimentos/etiologia , Transtornos dos Movimentos/terapia , Mutação/genética , Neuroglia/metabolismo , Neuroglia/patologia , Lipofuscinoses Ceroides Neuronais/complicações , Lipofuscinoses Ceroides Neuronais/patologia , Neurônios/metabolismo , Neurônios/patologia
10.
Am J Physiol Renal Physiol ; 295(1): F171-8, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18495797

RESUMO

We previously reported an enhanced tonic dilator impact of ATP-sensitive K+ channels in afferent arterioles of rats with streptozotocin (STZ)-induced diabetes. The present study explored the hypothesis that other types of K+ channel also contribute to afferent arteriolar dilation in STZ rats. The in vitro blood-perfused juxtamedullary nephron technique was utilized to quantify afferent arteriolar lumen diameter responses to K+ channel blockers: 0.1-3.0 mM 4-aminopyridine (4-AP; KV channels), 10-100 microM barium (KIR channels), 1-100 nM tertiapin-Q (TPQ; Kir1.1 and Kir3.x subfamilies of KIR channels), 100 nM apamin (SKCa channels), and 1 mM tetraethylammonium (TEA; BKCa channels). In kidneys from normal rats, 4-AP, TEA, and Ba2+ reduced afferent diameter by 23 +/- 3, 8 +/- 4, and 18 +/- 2%, respectively, at the highest concentrations employed. Neither TPQ nor apamin significantly altered afferent diameter. In arterioles from STZ rats, a constrictor response to TPQ (22 +/- 4% decrease in diameter) emerged, and the response to Ba2+ was exaggerated (28 +/- 5% decrease in diameter). Responses to the other K+ channel blockers were similar to those observed in normal rats. Moreover, exposure to either TPQ or Ba2+ reversed the afferent arteriolar dilation characteristic of STZ rats. Acute surgical papillectomy did not alter the response to TPQ in arterioles from normal or STZ rats. We conclude that 1) KV, KIR, and BKCa channels tonically influence normal afferent arteriolar tone, 2) KIR channels (including Kir1.1 and/or Kir3.x) contribute to the afferent arteriolar dilation during diabetes, and 3) the dilator impact of Kir1.1/Kir3.x channels during diabetes is independent of solute delivery to the macula densa.


Assuntos
Arteríolas/fisiologia , Diabetes Mellitus Tipo 1/fisiopatologia , Rim/irrigação sanguínea , Canais de Potássio/fisiologia , 4-Aminopiridina/farmacologia , Animais , Apamina/farmacologia , Arteríolas/efeitos dos fármacos , Arteríolas/fisiopatologia , Venenos de Abelha/farmacologia , Diabetes Mellitus Experimental/fisiopatologia , Rim/efeitos dos fármacos , Masculino , Ratos , Ratos Sprague-Dawley , Tetraetilamônio/farmacologia
11.
Am J Physiol Renal Physiol ; 288(3): F545-51, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15536171

RESUMO

Experiments addressed the hypothesis that afferent and efferent arterioles differentially rely on Ca2+ influx and/or release from intracellular stores in generating contractile responses to AVP. The effect of Ca2+ store depletion or voltage-gated Ca2+ channel (VGCC) blockade on contractile responsiveness to AVP (0.01-1.0 nM) was assessed in blood-perfused juxtamedullary nephrons from rat kidney. Depletion of intracellular Ca2+ stores by 100 microM cyclopiazonic acid (CPA) or 1 microM thapsigargin treatment increased afferent arteriolar baseline diameter by 14 and 21%, respectively, but did not significantly alter efferent arteriolar diameter. CPA attenuated the contractile response to 1.0 nM AVP by 34 and 55% in afferent and efferent arterioles, respectively (P = 0.013). The impact of thapsigargin on AVP-induced afferent arteriolar contraction (52% inhibition) was also less than its effect on the efferent arteriolar response (88% inhibition; P = 0.046). In experiments probing the role of the Ca2+ influx through VGCCs, 10 microM diltiazem evoked a 34% increase in baseline afferent arteriolar diameter and attenuated the contractile response to 1.0 nM AVP by 45%, without significantly altering efferent arteriolar baseline diameter or responsiveness to AVP. Combined treatment with both diltiazem and thapsigargin prevented AVP-induced contraction of both vascular segments. We conclude that Ca2+ release from the intracellular stores contributes to the contractile response to AVP in both afferent and efferent arterioles but is more prominent in the efferent arteriole. Moreover, the VGCC contribution to AVP-induced renal arteriolar contraction resides primarily in the afferent arteriole.


Assuntos
Arginina Vasopressina/farmacologia , Cálcio/fisiologia , Músculo Liso Vascular/fisiologia , Circulação Renal/fisiologia , Vasoconstritores/farmacologia , Animais , Arginina Vasopressina/antagonistas & inibidores , Arteríolas/efeitos dos fármacos , Arteríolas/fisiologia , Pressão Sanguínea/efeitos dos fármacos , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio/efeitos dos fármacos , ATPases Transportadoras de Cálcio/metabolismo , Diltiazem/farmacologia , Indóis/farmacologia , Ativação do Canal Iônico/efeitos dos fármacos , Masculino , Contração Muscular/efeitos dos fármacos , Músculo Liso Vascular/efeitos dos fármacos , Néfrons/metabolismo , Ratos , Ratos Sprague-Dawley , Circulação Renal/efeitos dos fármacos , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático , Tapsigargina/farmacologia , Vasodilatadores/farmacologia
12.
J Am Soc Nephrol ; 11(7): 1199-1207, 2000 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-10864575

RESUMO

Experiments were performed to determine the involvement of ATP-sensitive K(+) channels (K(ATP) channels) in the renal afferent arteriolar dilation that occurs during the hyperfiltration stage of insulin-dependent diabetes mellitus (IDDM). IDDM was induced in rats by streptozotocin (STZ) injection, and adequate insulin was provided to maintain moderate hyperglycemia. Sham rats received vehicle treatments. Two weeks later, afferent arteriolar function was assessed using the in vitro blood-perfused juxtamedullary nephron technique. Baseline afferent arteriolar lumen diameter was greater in STZ rats (25.9 +/- 1.1 microm) than in sham rats (20.8 +/- 1.0 microm). Glibenclamide (3 to 300 microM) had virtually no effect on afferent arterioles from sham rats; however, this K(ATP) antagonist caused concentration-dependent afferent arteriolar constriction in kidneys from STZ-treated rats, restoring lumen diameter to 20.6 +/- 1.7 microm (P > 0.05 versus sham baseline). In both groups of rats, pinacidil (a cyanoguanidine K(ATP) agonist; 0.3 to 300 microM) evoked concentration-dependent afferent arteriolar dilation, indicating the functional expression of K(ATP) channels; however, lumen diameter was increased by 73% in STZ kidneys but only by 48% in sham kidneys. The gliben-clamide-sensitive afferent arteriolar dilator response to 1 microM PCO-400 (a benzopyran K(ATP) agonist) was also accentuated in STZ kidneys. These observations suggest that increases in both the functional availability and basal activation of K(ATP) channels promote afferent arteriolar vasodilation during the early stage of IDDM, changes that likely contribute to the etiology of diabetic hyperfiltration.


Assuntos
Trifosfato de Adenosina/farmacologia , Arteríolas/fisiopatologia , Diabetes Mellitus Experimental/fisiopatologia , Canais de Potássio/efeitos dos fármacos , Canais de Potássio/fisiologia , Animais , Arteríolas/efeitos dos fármacos , Benzopiranos/farmacologia , Ciclopentanos/farmacologia , Diabetes Mellitus Tipo 1/fisiopatologia , Glibureto/farmacologia , Hipoglicemiantes/farmacologia , Masculino , Pinacidil/farmacologia , Bloqueadores dos Canais de Potássio , Ratos , Ratos Sprague-Dawley , Vasodilatadores/farmacologia , Sistema Vasomotor/efeitos dos fármacos , Sistema Vasomotor/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...